9x^2-1=(3x-1)(2x+5)

Simple and best practice solution for 9x^2-1=(3x-1)(2x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2-1=(3x-1)(2x+5) equation:



9x^2-1=(3x-1)(2x+5)
We move all terms to the left:
9x^2-1-((3x-1)(2x+5))=0
We multiply parentheses ..
9x^2-((+6x^2+15x-2x-5))-1=0
We calculate terms in parentheses: -((+6x^2+15x-2x-5)), so:
(+6x^2+15x-2x-5)
We get rid of parentheses
6x^2+15x-2x-5
We add all the numbers together, and all the variables
6x^2+13x-5
Back to the equation:
-(6x^2+13x-5)
We get rid of parentheses
9x^2-6x^2-13x+5-1=0
We add all the numbers together, and all the variables
3x^2-13x+4=0
a = 3; b = -13; c = +4;
Δ = b2-4ac
Δ = -132-4·3·4
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-11}{2*3}=\frac{2}{6} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+11}{2*3}=\frac{24}{6} =4 $

See similar equations:

| 3x/2+8=6 | | 2.0=1.233+0.75x | | (1/5)x+(1/3)=-5 | | 1.5=0.4333+0.4x | | 2.3x-15.11=4.9 | | 3.25=0.841+0.4905x | | -69=7v=56 | | 2^2x-52^x=-4 | | 3u^2-16u=-16 | | 1/8x-1/11x-+1/88x=8 | | 6x-10=4(x+43 | | 6x-10=4(x+4) | | 6^3x=1/26 | | 6x²-17x²×12=0 | | 5-(3x-7)=3-4x | | 9x-12=3x+48 | | 3(n-7)-(6-5n)=7n | | -5(n-3)-(3-3n)=2n | | 12x-3(3x-1)=2x+9 | | x+(x/2)=330227 | | 3(x-1)^2+5x=5 | | (x-2)*(5x-4)+1=0 | | (x-2)(5x-4)+1=0 | | 13x-2(3x-2)=6x+8 | | (x/2)-(x/6)+7=x+7 | | 36x=2/13 | | x/2-x/6+7=x+7 | | 1/9x+4x=-3x | | 9x+4x=-3x | | 5x^2-28x-21=0 | | 9x+22=4x+77 | | -6.2h=14.57 |

Equations solver categories